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Evolutionary and genetic dynamics, 
processes and laws

Fitness

Population 
dynamic

Hereditability

Hereditability

DNA coding 
(Schrodinger, 

Watson and Creek)

Feature

Fitness

MEndelDar win

Tur ing Bar iccel i Moder n comput er  
evol ucionist s: 
Hol l and, Schwef el , 
Rechenber g, Fogel , 
Baeck, Pr ice, Koza, 
O'Nei l l , Ryan, ...

Gregor Johann Mendel July 
20, 1822

–
January 6, 1884.

Gregor Charles Darwin 12 
February 1809 

–
19 April 1882.
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Initial population 
setting

Control parameters 
definition of the selected  
evolutionary algorithm

Fitness evaluation 
of each individual 

(parent)

Parent selection 
based on their 

fitness 

Offspring creation

Mutation of a new 
offsprings

Fitness evaluation

Best individual 
selection from 

parents and 
offsprings 

New empty 
population 

occupation by 
selected individuals

Old population is 
replaced by new 

one

Evolutionary loop

Evolution – the  Central Dogma

From the above mentioned 
main ideas of Darwin and 
Mendel theory of 
evolution, ECT uses some 
building blocks, see the 
diagram. 

The evolutionary principles 
are transferred into 
computational methods in 
a simplified form that will 
be outlined now.
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Examples
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Particle Swarm 

• Xboids: https://www.youtube.com/watch?v=M028vafB0l8

• Robot Swarm driven by Particle Swarm Optimization algorithm: 
https://www.youtube.com/watch?v=RLIA1EKfSys

https://www.youtube.com/watch?v=M028vafB0l8
https://www.youtube.com/watch?v=RLIA1EKfSys
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The Objective Function

• The principle of cost function is that behavior of model has to be 
minimized in order to find all N parameters exactly.

• Model is defined by user (or by evolution).

• Data are generated artificially or better, they come from real world.

System

Model

Data

Difference that is going 

to be minimized 

(or maximized)
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The Objective Function
Chaos Synchronization

• The cost function of the Lorenz - Lorenz (LL) synchronization is

• Landscape of the synchronization cost function CVLL depending on 
the parameters a2 and d.
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The Applicability of Evolutionary Algorithms

• The fractal function – Weierstrass non-differentiable function added 
on the 1st De Jong.
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Population

• This relationship ensures that all parameters of individuals are 
randomly generated within the permitted limits of the space of 
possible solutions. 

• Sample of the population can be seen in figures below:

J1 J2 J3 J4 … J10

424 104 53,3 942.9 … 178

-1,8 -1 0,7 -1,25 … -1,19

1,2 2 1,2 -1,5 … 0,1
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Population

• History of the best individual (or best individuals in repeated 
simulations)

• History of the worst individual

• Overall view of the convergence of the population
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Population Dynamics
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Algorithms
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SOMA 
Video
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 3, 1, 2,

G G G

j r j r j r jv x F x x  

Differential Evolution
Pseudocode
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Evolutionary manipulation with simple 
predefined objects essential for the 
synthesis of more complex structures 
which satisfy the predetermined 
conditions. As an example electronic 
circuit can be used.

Evolution of Symbolic Structures
Brief Overview

Evolution
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Evolution of Symbolic Structures
Brief Overview

Examples:

• Robot control program

• Antenna

• Controller for feedback control

• …

http://www.nelsonrobotics.org/evolutionar

y_robotics_web/links.html

http://www.nelsonrobotics.org/evolutionary_robotics_web/links.html
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Deterministic Chaos Control
Logistic Equation

• Used logistic equation

• Unperturbed map (p = 0) with r = 3.8, studied UPOs:

• p-1: xF = 0.7384

• p-2: x1 = 0.3737, x2 = 0.8894

• and higher periodic orbits: p-4, p-8
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Deterministic Chaos Control
What is Deterministic Chaos?
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Deterministic Chaos Control
What is Deterministic Chaos - Visualization
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Deterministic Chaos Control
What is Deterministic Chaos?

• Mechanical systems (billiards, inverse pendulum ...)

• Astrophysical systems (ternary systems, plasma ...)

• Biological systems (predator-prey, DNA)

• Chemical processes (chemical oscillators - BZ reaction ...)

• Physical processes (plasma, atmospheric happening ...)

• Economic systems (stock exchange, economic cycles ...)

• Information systems (genetic algorithms, ...)

• Energetic and electronic systems (Chua's circuit, ...)

• …
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Deterministic Chaos Control
Control Method

Original Pyragas’s TDAS:

Discrete modification for Henon map:

Original Pyragas’s ETDAS:
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All optimizations were performed by evolutionary algorithms SOMA and DE

I ndex Algorithm /  Version

1 SOMA AllToOne 

2 SOMA AllToRandom

3 SOMA AllToAll

4 SOMA AllToAllAdaptive

Parameter ATO /  ATR ATA /  ATAA

PathLength 3 3

Step 0.33 0.33

PRT 0.1 0.1

PopSize 25 10

Migrations 25 7

CF Evaluations 
(CFE)

5400 5670

Used SOMA versions Parameter settings

Optimized EDTAS parameters:  -5 ≤ K ≤ 5 , 0 ≤ Fmax ≤ 0.5 and 0 ≤ R ≤ 1 

Deterministic Chaos Control
Optimizing Algorithms



navy.cs.vsb.cz27

Deterministic Chaos Control
Cost Function – p-1 Orbit

Basic proposal

Where:  TS – target state, AS – actual state,τ – simulation interval

Advanced proposal

Where:  τ1 – the first min. value of difference between TS and AS 

 τ2 - short time interval (τ1+ 20 iterations) 



navy.cs.vsb.cz28

Deterministic Chaos Control
Cost Function – Higher Periodic Orbits

Where:  TS – target state, AS – actual state
 τ1 – the first min. value of difference between TS and AS 

 τ2 - short time interval τ1+ τs (τs = 20 iterations)

 penalization1= 0 if τ – τ1 ≥ τs

 penalization1= 10*(τ – τ1) if τ – τ1 < τs (i.e. late stabilization) 
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Deterministic Chaos Control
Cost Function – Higher Periodic Orbits
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Deterministic Chaos Control
Results – Control of p-1 orbit TDAS

EA K Fmax R CF Value

1 -1.03809 0.449163 0.326949 0

2 -1.01208 0.142598 0.294697 0

3 -1.16149 0.316863 0.256766 0

4 -1.04145 0.155919 0.345818 0
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Deterministic Chaos Control
Results – Control of p-2 orbit TDAS

EA K Fmax R CF Value

1 0.389335 0.09861 0.271823 2.17.10-7

2 0.472397 0.155925 0.461329 1.60.10-14

3 0.558013 0.15257 0.421521 1.57.10-7

4 0.54784 0.153437 0.43191 1.53.10-8
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Deterministic Chaos Control
Results – Control of p-4 orbit TDAS

EA K Fmax R CF Value

1 -0.383347 0.312323 0.436979 9.57.10-8

2 -0.425825 0.283005 0.457182 5.39.10-8

3 -0.369616 0.112991 0.410288 9.43.10-9

4 -0.412404 0.341886 0.467282 9.90.10-8



navy.cs.vsb.cz33

Deterministic Chaos Control
Comparison with OGY for p-1 and p-2 orbit

Stabilization of p-1 orbit Stabilization of p-2 orbit
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Deterministic Chaos Control
Conclusion

• Evolutionary algorithms are capable of solving this class of difficult 
problems. 

• Quality of results produced by optimizations of chaos control 
strongly depends on the proper definition of a cost function. 

• Faster stabilization when compared with classical OGY method.

• Possibilities for the future research - better settings of EA and 
testing more complex cost functions.
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Plasma Reactor Control
Idea

• In this experiment, the performance of a self-organizing migration algorithm 
(SOMA) has been compared with simulated annealing (SA) and differential 
evolution (DE) for an engineering application. 

• This application is the automated deduction of fourteen Fourier terms in a 
radio-frequency (RF) waveform to tune a Langmuir probe. 

• Langmuir probes are diagnostic tools used to determine the ion density and 
the electron energy distribution in plasma processes. RF plasmas are 
inherently nonlinear, and many harmonics of the driving fundamental can be 
generated in the plasma. 

• To improve the quality of the measurements, these RF components can be 
removed by an active-compensation method. 

• Here, seven harmonics are used to generate the waveform applied to the 
probe tip. Therefore, fourteen mutually interacting parameters (seven phases 
and seven amplitudes) had to be tuned on-line. 
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Plasma Reactor Control
Equipment and Scheme

	

PC with control system

DC Buffer

DC Bias

Harmonic Generator RF Generator

Langmuir Probe GEC Cell

Sync

Plasma

RFRF Signal

Floating Potencial

14 Control Signals

Computer with control software (right), 
wave synthesizer (bottom left) and 
oscilloscope (top left)

Problem scheme
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Plasma Reactor Control
Equipment and Scheme

~
Plasma

RF Generator

Output

Input

Massflow controller

Vacuum Vessel

	

Reactor Chamber
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Plasma Reactor Control
Problem Definition

• The fourteen input parameters interact to some degree due to the 
technical realization of the synthesizer hardware and the nature of 
the problem. 

• For example, the slightest departure from an ideal sinusoidal shape 
in one of the channels introduces harmonics itself. 

• In practice, even after careful electronic design, it is found that 
there is a weak but significant coupling between amplitude control 
and phase and vice versa. 

• Small variations in the 14 parameters caused by these interactions 
could lead to a large deviation from optimum tuning and hence the 
probe measurement itself. 
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Plasma Reactor Control
Problem Definition

• As a consequence of this, the number of points in the discrete search space 
has to be calculated as follows:

where:

– n is the number of points in search space.

– b is the resolution per channel in bits.

– p is the number of parameters to be optimized.

• The D/A and A/D converters used in this project had a resolution of 12 bits 
and the dimensionality of the search space was 14. 

• Hence, the search space consisted of n = 3.7 x 1050 search points. 

• Due to the system time constant, mapping out the entire search space would 
take approximately 1041 years with the plasma system used. 

(2 )b pn 
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Plasma Reactor Control
Experiment Setting

Plasma parameters used during the experiments

The best parameter settings used in experiments

 

Plasma parameters 
Gas Argon 

Power 50 W 
Pressure 100 mTorr 

Flow rate 9.5 sccm 

 

 

SA  DE  SOMA 

Tstart  25000  CR 0.5  PopSize 50 

Temperature coef. 0.8  F 0.8  MinDiv -1 

Iterations per temperature  50  NP 50  Migrations 14 

Smax  4000  Generations 250  PathLength 2 

Number of particles  3     Step 0.11 

Iterations  4000     PRT 0.1 
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Plasma Reactor Control
Results
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Plasma Reactor Control
Results
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Plasma Reactor Control
Results

SA
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Plasma Reactor Control
Results

• Experiment itself was recorded 
on videotape and movie shows 
two approaches:

– By human operator

– By evolutionary algorithms

• During experiments so called 
linear drift has 
been observed
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Plasma Reactor Control
Conclusion

• Three stochastic optimization algorithms, SA, DE and SOMA, were used 
for online tuning of an actively compensated Langmuir probe system. 

• These algorithms were selected because of the problem complexity. 

• The experimental results demonstrate that, in general, all three 
algorithms were suitable for active compensation of the RF-driven 
plasma probe. 

• However, the results also show that that SOMA and DE showed better 
performance compared with SA in this specific application. 

• SOMA and DE performed almost three times better than SA. Bearing in 
mind that plasmas are highly nonlinear dynamical systems with changing 
properties, then the results produced by SOMA and DE are encouraging.
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Robot Control Program Synthesis
Idea

• In this study sample using EAs to find a sequence of commands for 
robot will be demonstrated. 

• More specifically, it is an artificial ant which searches for a specific 
sequence of commands. 

• The goal is to find a sequence that ant passed through the Santa 
Fe trail with the least number of steps - commands. 

• Ant and Santa Fe Trail is only a special case. 

• On this problem, two methods were compared. Analytical 
programming and genetic programming, the results of which were 
taken from the literature.
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Robot Control Program Synthesis
Problem Description

• Santa Fe trail for an artificial ant, defined by (Koza, 1998) in 
simulations with genetic programming. 

• The role of artificial ant is engaged in movement in space, collecting 
food on a path and avoiding obstacles. 

• This approach can be applied to a robot that has to move in a 
certain area.

• Santa Fe Trail is defined as an
array of 31 × 32 boxes, 
see figure.

47



navy.cs.vsb.cz48

Robot Control Program Synthesis
Problem Description

• Black boxes in this figure represent food in the terminology of the 
Santa Fe problem.

• Food has to be collected. White and gray boxes do not contain food. 

• Gray cells were chosen to illustrate the resulting paths that the ant 
passes. Standard ant 
could actually go along the 
path as follows: 
"... Look ahead when the 
next meal box, move to 
the field and pick up 
the food, otherwise turn 
clockwise and start from 
the beginning ...".

48
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IfFoodAhead

Move Prog3

IfFoodAhead

Move Right

Prog2

Right Prog2

Left Right

Prog2

IfFoodAhead

Move Left

Move

Robot Control Program Synthesis
Problem Description

IfFoodAhead[ Move, Prog3[ IfFoodAhead [ Move, Right], 
Prog2[ Right, Prog2[ Left, Right]], 
Prog2[ IfFoodAhead[ Move, Left], Move]]]
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IfFoodAhead

Move IfFoodAhead

Move Prog2

Prog2

Right IfFoodAhead

Prog2

IfFoodAhead

IfFoodAhead

Move Move

Move

Move

Prog3

IfFoodAhead

Move IfFoodAhead

Prog3

Right Right Prog2

Left Prog2

IfFoodAhead

Prog2

Prog2

Left Move

Right

IfFoodAhead

Move Left

Prog2

IfFoodAhead

Move Move

Prog2

IfFoodAhead

Move Right

Right

Left

Left IfFoodAhead

Move Right

Move

Robot Control Program Synthesis
Program Dynamics
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Deterministic Chaos Synthesis
Idea

• This experiment introduces the notion of chaos synthesis by means of 
evolutionary algorithms and develops a new method for chaotic systems 
synthesis. 

• Used method (AP) is similar to genetic programming and grammatical 
evolution and is being applied along with three evolutionary algorithms: 
differential evolution, self-organizing migration and genetic 
algorithm. 

• The aim of this investigation is to synthesize new and “simple” chaotic 
systems based on some elements contained in a selected existing 
chaotic system and a properly defined cost function. 

• For all algorithms, 100 simulations of chaos synthesis were repeated and 
then averaged to guarantee the reliability and robustness of the 
proposed method. 

• The most significant results were carefully selected, visualized and 
commented in this report.
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Deterministic Chaos Synthesis
Used System

• Logistic equation as a system used for decomposition was selected 

• This equation can be viewed
as a tree structure.

Times[A, Plus[1, Times[−1, x]], x]

• Building “bricks” from that tree were 
used as basic objects for symbolic 
regression.

1 (1 )nx Ax x  
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Deterministic Chaos Synthesis
Used Algorithms

April 29, 2008 16:16 02077

Chaos Synthesis by Means of Evolutionary Algori thms 925

• Sext ic and Quint ic problems [Zelinka &

Oplatkova, 2003].

• Simple neural networks synthesis by means of

AP — a simple few-layered NN synthesis was

tested by AP [Zelinka & Volna, 2005].

• Opt imal robot t rajectory est imat ion [Oplatkova,

2005; Oplatkova & Zelinka, 2006].

In the remainder of this art icle, at tent ion will be

focused on chaot ic systems synthesis by means of

AP and selected evolut ionary algorithms.

6. Paramet er Set t ing

The control parameter set t ings of used EAs (with

abbreviat ion in Table 3) have been found empiri-

cally and are given in Table 4 (SOMA), Table 5

(DE) and Table 6 (GA), respect ively. The main

criterion for this set t ing is to retain the set t ing of

parameters as much as possible for all simulat ions

and, of course, the same number of cost funct ion

evaluat ions as well as the same populat ion sizes

(parameter PopSize for SOMA and GA, and NP

for DE). Individual length represents the number

of opt imized parameters, i.e. in the case of this par-

t icipat ion a maximal number of integer indexes will

Table 3. Algorithms abbreviat ion.

Algorithm Version Abbreviat ion

SOMA AllToOne A

AllToOneRandomly B

AllToAll C

AllToAllAdapt ive D

Diferent ial Evolut ion DERand1Bin E

DERand2Bin F

DEBest2Bin G

DELocalToBest H

DEBest1JIter I

DERand1DIter J

Genet ic Algorithm K

Table 4. SOMA set t ing for four basic search st rategies: A,

B, C, D.

Algorithm A B C D

PathLength 3 3 3 3

Step 0.11 0.11 0.11 0.11

PRT 0.1 0.1 0.1 0.1

PopSize 200 200 200 200

Migrat ions 10 10 10 10

MinDiv − 0.1 − 0.1 − 0.1 − 0.1

Individual Length 50 50 50 50

Table 5. DE set t ing for six basic search st rategies: E, F, G,

H, I, J.

Algorithm E F G H I J

NP 200 200 200 200 200 200

F 0.9 0.9 0.9 0.9 0.9 0.9

CR 0.3 0.3 0.3 0.3 0.3 0.3

Generat ions 200 200 200 200 200 200

Individual Length 50 50 50 50 50 50

Table 6. GA set t ing for canon-

ical version of GA: K .

Algorithm K

PopSize 200

Mutat ion 0.4

Generat ions 100

Individual Length 50

be used in evolut ion in order to synthesize a new

chaot ic system. All algorithms were stopped after

reaching the maximum of the defined cost funct ion

evaluat ions.

7. Simulat ions and Result s

7.1. Chaot i c map select i on

AP, applied to the three evolut ionary algorithms in

11 versions, was used in this invest igat ion. Symbolic

objects (e.g. variables, constants, . . . ) for manipula-

t ion and complex structure synthesis were selected

from the well-known logist ic equat ion:

xn+ 1 = A × (1− x) (9)

This select ion was based on the fact that the logis-

t ic equat ion is a well-known simplest system that

can produce chaot ic behavior. This equat ion is also

well analyzed. It was expected that evolut ionary

search would be possible to synthesize the logist ic

equat ion, which was in fact a source of elements

for GFS. Evolut ionary synthesis of logist ic equat ion

was actually observed, as further discussed later.

Another reason behind the select ion of the logist ic

equat ion is that results from designed experiments

can be easily compared, verified and analyzed.

Basic set of objects used in symbolic regression

are { x, A, + ,− , ∗, / } . I t is also important to note

that experiments provided here, i.e. evolut ionary

synthesis of chaot ic systems, are not rest ricted to

one-dimensional chaot ic maps but can be applied

in principle to synthesis of higher-dimensional and

more complex chaot ic systems. This declarat ion is

April 29, 2008 16:16 02077

Chaos Synthesi s by Means of Evolutionary Algori thms 925

• Sext ic and Quint ic problems [Zelinka &

Oplatkova, 2003].

• Simple neural networks synthesis by means of

AP — a simple few-layered NN synthesis was

tested by AP [Zelinka & Volna, 2005].

• Opt imal robot t rajectory est imat ion [Oplatkova,

2005; Oplatkova & Zelinka, 2006].

In the remainder of this art icle, at tent ion will be

focused on chaot ic systems synthesis by means of

AP and selected evolut ionary algorithms.

6. Paramet er Set t ing

The control parameter set t ings of used EAs (with

abbreviat ion in Table 3) have been found empiri-

cally and are given in Table 4 (SOMA), Table 5

(DE) and Table 6 (GA), respect ively. The main

criterion for this set t ing is to retain the set t ing of

parameters as much as possible for all simulat ions

and, of course, the same number of cost funct ion

evaluat ions as well as the same populat ion sizes

(parameter PopSize for SOMA and GA, and NP

for DE). Individual length represents the number

of opt imized parameters, i.e. in the case of this par-

t icipat ion a maximal number of integer indexes will

Table 3. Algorithms abbreviat ion.

Algorithm Version Abbreviat ion

SOMA AllToOne A

AllToOneRandomly B

AllToAll C

AllToAllAdapt ive D

Diferent ial Evolut ion DERand1Bin E

DERand2Bin F

DEBest2Bin G

DELocalToBest H

DEBest1JIter I

DERand1DIter J

Genet ic Algorithm K

Table 4. SOMA set t ing for four basic search st rategies: A,

B, C, D.

Algorithm A B C D

PathLength 3 3 3 3

Step 0.11 0.11 0.11 0.11

PRT 0.1 0.1 0.1 0.1

PopSize 200 200 200 200

Migrat ions 10 10 10 10

MinDiv − 0.1 − 0.1 − 0.1 − 0.1

Individual Length 50 50 50 50

Table 5. DE set t ing for six basic search st rategies: E, F, G,

H, I, J.

Algorithm E F G H I J

NP 200 200 200 200 200 200

F 0.9 0.9 0.9 0.9 0.9 0.9

CR 0.3 0.3 0.3 0.3 0.3 0.3

Generat ions 200 200 200 200 200 200

Individual Length 50 50 50 50 50 50

Table 6. GA set t ing for canon-

ical version of GA: K .

Algorithm K

PopSize 200

Mutat ion 0.4

Generat ions 100

Individual Length 50

be used in evolut ion in order to synthesize a new

chaot ic system. All algorithms were stopped after

reaching the maximum of the defined cost funct ion

evaluat ions.

7. Simulat ions and Result s

7.1. Chaot i c map select i on

AP, applied to the three evolut ionary algorithms in

11 versions, was used in this invest igat ion. Symbolic

objects (e.g. variables, constants, . . . ) for manipula-

t ion and complex structure synthesis were selected

from the well-known logist ic equat ion:

xn+ 1 = A × (1− x) (9)

This select ion was based on the fact that the logis-

t ic equat ion is a well-known simplest system that

can produce chaot ic behavior. This equat ion is also

well analyzed. It was expected that evolut ionary

search would be possible to synthesize the logist ic

equat ion, which was in fact a source of elements

for GFS. Evolut ionary synthesis of logist ic equat ion

was actually observed, as further discussed later.

Another reason behind the select ion of the logist ic

equat ion is that results from designed experiments

can be easily compared, verified and analyzed.

Basic set of objects used in symbolic regression

are { x, A, + ,− , ∗, / } . I t is also important to note

that experiments provided here, i.e. evolut ionary

synthesis of chaot ic systems, are not restricted to

one-dimensional chaot ic maps but can be applied

in principle to synthesis of higher-dimensional and

more complex chaot ic systems. This declarat ion is
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• Sext ic and Quint ic problems [Zelinka &

Oplatkova, 2003].

• Simple neural networks synthesis by means of

AP — a simple few-layered NN synthesis was

tested by AP [Zelinka & Volna, 2005].

• Opt imal robot t rajectory est imat ion [Oplatkova,

2005; Oplatkova & Zelinka, 2006].

In the remainder of this art icle, at tent ion will be

focused on chaot ic systems synthesis by means of

AP and selected evolut ionary algorithms.

6. Paramet er Set t ing

The control parameter set t ings of used EAs (with

abbreviat ion in Table 3) have been found empiri-

cally and are given in Table 4 (SOMA), Table 5

(DE) and Table 6 (GA), respect ively. The main

criterion for this set t ing is to retain the set t ing of

parameters as much as possible for all simulat ions

and, of course, the same number of cost funct ion

evaluat ions as well as the same populat ion sizes

(parameter PopSize for SOMA and GA, and NP

for DE). Individual length represents the number

of opt imized parameters, i.e. in the case of this par-

t icipat ion a maximal number of integer indexes will

Table 3. Algorithms abbreviat ion.

Algorithm Version Abbreviat ion

SOMA AllToOne A

AllToOneRandomly B

AllToAll C

AllToAllAdapt ive D

Diferent ial Evolut ion DERand1Bin E

DERand2Bin F

DEBest2Bin G

DELocalToBest H

DEBest1JIter I

DERand1DIter J

Genet ic Algorithm K

Table 4. SOMA set t ing for four basic search st rategies: A,

B, C, D.

Algorithm A B C D

PathLength 3 3 3 3

Step 0.11 0.11 0.11 0.11

PRT 0.1 0.1 0.1 0.1

PopSize 200 200 200 200

Migrat ions 10 10 10 10

MinDiv − 0.1 − 0.1 − 0.1 − 0.1

Individual Length 50 50 50 50

Table 5. DE set t ing for six basic search st rategies: E, F, G,

H, I, J.

Algorithm E F G H I J

NP 200 200 200 200 200 200

F 0.9 0.9 0.9 0.9 0.9 0.9

CR 0.3 0.3 0.3 0.3 0.3 0.3

Generat ions 200 200 200 200 200 200

Individual Length 50 50 50 50 50 50

Table 6. GA set t ing for canon-

ical version of GA: K .

Algorithm K

PopSize 200

Mutat ion 0.4

Generat ions 100

Individual Length 50

be used in evolut ion in order to synthesize a new

chaot ic system. All algorithms were stopped after

reaching the maximum of the defined cost funct ion

evaluat ions.

7. Simulat ions and Result s

7.1. Chaot i c map select i on

AP, applied to the three evolut ionary algorithms in

11 versions, was used in this invest igat ion. Symbolic

objects (e.g. variables, constants, . . . ) for manipula-

t ion and complex structure synthesis were selected

from the well-known logist ic equat ion:

xn+ 1 = A × (1− x) (9)

This select ion was based on the fact that the logis-

t ic equat ion is a well-known simplest system that

can produce chaot ic behavior. This equat ion is also

well analyzed. It was expected that evolut ionary

search would be possible to synthesize the logist ic

equat ion, which was in fact a source of elements

for GFS. Evolut ionary synthesis of logist ic equat ion

was actually observed, as further discussed later.

Another reason behind the select ion of the logist ic

equat ion is that results from designed experiments

can be easily compared, verified and analyzed.

Basic set of objects used in symbolic regression

are { x, A, + ,− , ∗, / } . I t is also important to note

that experiments provided here, i.e. evolut ionary

synthesis of chaot ic systems, are not rest ricted to

one-dimensional chaot ic maps but can be applied

in principle to synthesis of higher-dimensional and

more complex chaot ic systems. This declarat ion is
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• Sext ic and Quint ic problems [Zelinka &

Oplatkova, 2003].

• Simple neural networks synthesis by means of

AP — a simple few-layered NN synthesis was

tested by AP [Zelinka & Volna, 2005].

• Opt imal robot t rajectory est imat ion [Oplatkova,

2005; Oplatkova & Zelinka, 2006].

In the remainder of this art icle, at tent ion will be

focused on chaot ic systems synthesis by means of

AP and selected evolut ionary algorithms.

6. Paramet er Set t ing

The control parameter set t ings of used EAs (with

abbreviat ion in Table 3) have been found empiri-

cally and are given in Table 4 (SOMA), Table 5

(DE) and Table 6 (GA), respect ively. The main

criterion for this set t ing is to retain the set t ing of

parameters as much as possible for all simulat ions

and, of course, the same number of cost funct ion

evaluat ions as well as the same populat ion sizes

(parameter PopSize for SOMA and GA, and NP

for DE). Individual length represents the number

of opt imized parameters, i.e. in the case of this par-

t icipat ion a maximal number of integer indexes will

Table 3. Algorithms abbreviat ion.

Algorithm Version Abbreviat ion

SOMA AllToOne A

AllToOneRandomly B

AllToAll C

AllToAllAdapt ive D

Diferent ial Evolut ion DERand1Bin E

DERand2Bin F

DEBest2Bin G

DELocalToBest H

DEBest1JIter I

DERand1DIter J

Genet ic Algorithm K

Table 4. SOMA set t ing for four basic search st rategies: A,

B, C, D.

Algorithm A B C D

PathLength 3 3 3 3

Step 0.11 0.11 0.11 0.11

PRT 0.1 0.1 0.1 0.1

PopSize 200 200 200 200

Migrat ions 10 10 10 10

MinDiv − 0.1 − 0.1 − 0.1 − 0.1

Individual Length 50 50 50 50

Table 5. DE set t ing for six basic search st rategies: E, F, G,

H, I, J.

Algorithm E F G H I J

NP 200 200 200 200 200 200

F 0.9 0.9 0.9 0.9 0.9 0.9

CR 0.3 0.3 0.3 0.3 0.3 0.3

Generat ions 200 200 200 200 200 200

Individual Length 50 50 50 50 50 50

Table6. GA set t ing for canon-

ical version of GA: K .

Algorithm K

PopSize 200

Mutat ion 0.4

Generat ions 100

Individual Length 50

be used in evolut ion in order to synthesize a new

chaot ic system. All algorithms were stopped after

reaching the maximum of the defined cost funct ion

evaluat ions.

7. Simulat ions and Result s

7.1. Chaot i c map select i on

AP, applied to the three evolut ionary algorithms in

11 versions, was used in this invest igat ion. Symbolic

objects (e.g. variables, constants, . . . ) for manipula-

t ion and complex structure synthesis were selected

from the well-known logist ic equat ion:

xn+ 1 = A × (1− x) (9)

This select ion was based on the fact that the logis-

t ic equat ion is a well-known simplest system that

can produce chaot ic behavior. This equat ion is also

well analyzed. It was expected that evolut ionary

search would be possible to synthesize the logist ic

equat ion, which was in fact a source of elements

for GFS. Evolut ionary synthesis of logist ic equat ion

was actually observed, as further discussed later.

Another reason behind the select ion of the logist ic

equat ion is that results from designed experiments

can be easily compared, verified and analyzed.

Basic set of objects used in symbolic regression

are { x, A, + ,− , ∗, / } . I t is also important to note

that experiments provided here, i.e. evolut ionary

synthesis of chaot ic systems, are not rest ricted to

one-dimensional chaot ic maps but can be applied

in principle to synthesis of higher-dimensional and

more complex chaot ic systems. This declarat ion is

DE

SOMA

GA

Algorithms
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Deterministic Chaos Synthesis
The Cost Function

• The cost function used for chaos synthesis, comparing with other 
problems like chaos control or black-box optimization, is quite a complex 
structure which cannot be easily described by a few simple mathematical 
equations. Instead, it is described by the following procedure:

1. Take a synthesized function and evaluate it for 500 iterations with A 
∈ [0, 4]   with a sampling step of ΔA = 0.1. 

2. Check if each value of A for all 500 iterations is unique or if some 
data are repeated in the series (the first check for chaos, 
indirectly). If the data is not unique, then go to step 5 else go to 
step 3.

3. Take the last 200 values, and for each value of A, calculate its 
Lyapunov exponent.
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Deterministic Chaos Synthesis
The Cost Function

4. Check the Lyapunov exponent: if the Lyapunov exponent is positive, 
write all important data (synthesized functions, number of cost 
function evaluations, etc.) into a file. Then, repeat the simulation 
for another independent new one by going to step 1.

5. If the data is not unique, i.e. if the Lyapunov exponent is not 
positive, return an individual fitness, and sum all values whose 
occurrences in the dataset from step 1 are more than 1 (simply, it 
returns the occurrences of periodicity. Periodicity – higher 
penalization of an individual in the evolution).
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Deterministic Chaos Synthesis
Results Evaluation

• For results evaluation 
was used a few criteria:

– Histogram of leaf count 
(LC).

– Program size in the 
form of LC for each 
algorithm.

10 20 30 40 50 60

LC

0

2.5

5

7.5

10

12.5

15

17.5

H
i
t

A B C D E F G H I J K

Algorithm

10

20

30

40

50

60

70

L
C



navy.cs.vsb.cz57

Deterministic Chaos Synthesis
Results
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Deterministic Chaos Synthesis
Results
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Fig. 17. An example of bifurcat ion diagram and it s Lyapunov exponent , Eq. (11).

Fig. 18. Bifurcat ion diagram, Eq. (12).

April 29, 2008 16:16 02077
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Fig. 28. Bifurcat ion diagram, Eq. (20). Again a much more complicated example shown in Fig. 23.

Fig. 29. Bifurcat ion diagram, Eq. (21).

Fig. 30. Bifurcat ion diagram, Eq. (22).
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Fig. 31. Bifurcat ion diagram, Eq. (23), similar t o Fig. 19. Chaos was observed only in this interval. Behind this interval,

st rict ly determinist ic behavior, i.e. period doubling, as one of a typical route to chaos, is missing.

Fig. 32. Bifurcat ion diagram, Eq. (24). Again a nontypical example.

Fig. 33. Bifurcat ion diagram, Eq. (25).
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Deterministic Chaos Synthesis
Results (video)
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Deterministic Chaos Synthesis
Conclusion

• The aim of this presentation is to show how various chaotic systems can 
be synthesized by means of evolutionary algorithms. 

• Evolutionary synthesis of chaotic systems has been applied to 11 basic 
comparative simulations in this paper. 

• Each comparative simulation was repeated 100 times and all 1100 
results (100 simulations for each algorithm) were used to create 
statistics for overall performance evaluation of evolutionary chaos 
synthesis. The results look quite promising and convincing.

• For comparative studies, three algorithms were used — DE [Price, 1999], 
SOMA [Zelinka, 2004] and GA [Holland, 1975; Davis, 1996]. 

• They were chosen to show that evolutionary synthesis of chaos by AP 
can be implemented via any evolutionary algorithm and that they all give 
reasonable results.
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Logic (Electronics) Circuits Synthesis
Idea

• In this experiments three electronic circuits were experimentally 
synthesized. 

• The main point of this application was to confirm, that EA’s are capable 
of successful designing electronics circuits. 

• In experiments the synthesis of 

– Boolean problems

– Three electronic circuits for 

• traffic light control

• heat control 

• train station control

are described.

• In all three experiments (50 times repeated) AP has been observed to be 
capable of electronic circuit synthesis.
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Logic (Electronics) Circuits Synthesis
Boolean Problem

problém sudé-3-parity podle (Koza, 1998). 

 

Input 1 Input 2 Input 3 Output 

True True True False 
True  True  False  True 

True  False  True  True 

False  True  True  True 
True  False  False  False 

False  True  False  False 

False  False  True  False 
False  False  False  True 
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 -  output of the truth table

 -  output of the synthetized program
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Logic (Electronics) Circuits Synthesis
Boolean Problem

 

Solutions of the problem of Boolean even-3-parity using SA. 

 CFE  Program length 

Minimum 1460 710 

Average 23387 4203 

Maximum 127468 14731 

 

Solutions of the problem of Boolean even-3-parity using GA. 

 CFE  Program length 

Minimum 2923 220 

Average 35386 2910 

Maximum 130069 10157 

Solutions of the problem of Boolean even-3-parity using SOMA. 

 CFE  Program length 

Minimum 4256 508 
Average 23861 2950 

Maximum 92542 10770 

 

Solutions of the problem of Boolean even-3-parity using DE. 

 CFE  Program length 

Minimum 1371 58 

Average 9456 126 

Maximum 20789 186 

 

 

Solutions of the problem of Boolean even-3-parity using SA. 

 CFE  Program length 

Minimum 1460 710 

Average 23387 4203 

Maximum 127468 14731 

 

Solutions of the problem of Boolean even-3-parity using GA. 

 CFE  Program length 

Minimum 2923 220 

Average 35386 2910 

Maximum 130069 10157 

Solutions of the problem of Boolean even-3-parity using SOMA. 

 CFE  Program length 

Minimum 4256 508 
Average 23861 2950 

Maximum 92542 10770 

 

Solutions of the problem of Boolean even-3-parity using DE. 

 CFE  Program length 

Minimum 1371 58 

Average 9456 126 

Maximum 20789 186 
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Logic (Electronics) Circuits Synthesis
Boolean Problem
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((Nor[C, A]) || B || ( ! C && B && A) || ( ! B && C && A) || ( ! A && C && B) ||

(Nand[Nor[( ! C && B && A) || ( ! B && C && A) || ( ! A && C && B), A], C || B])) &&

((Nor[C || B, A || C]) || ((C || A) && (( ! C && B && A) || ( ! B && C && A) || ( ! A && C &&

B))))
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Ne!í"it – pracovní verze pro redakci a recenzenty – 11.10.2008 

 

510 Zelinka, Oplatková, ! eda, O"mera, V#ela$ : EVT – BEN technická literatura  

F && E && D && C && B && A || ! D && ! C && F && E && B &&  A || ! E && ! B && F && D && C && A || 

! E && ! D && ! C && ! B &&  F && A || ! F && ! A && E && D && C &&    B || ! F && ! D && ! C && ! A && 

E &&    B || ! F && ! E && ! D && ! C && ! B && ! A || (Nor[ Nand[D, (Nor[F,  E]) && ((Nor[(Nor[B, Nand[E, 

Nand[E,  A || F && E && D && C && B && A || ! D && ! C && F &&  E && B && A || ! E && ! B && F && D 

&& C &&  A || ! E && ! D && ! C && ! B && F &&  A || ! F && ! A && E && D && C &&  B || ! F && ! D && ! 

C && ! A && E &&  B || ! F && ! E && ! D && ! C && ! B && !  A]]]) || (Nor[Nor[D, F && B],  Nand[F && E && 

D && C && B && A || ! D && ! C && F && E && B && A || ! E && ! B && F && D && C &&  A || ! E && ! D 

&& ! C && ! B && F && A || ! F && ! A && E && D && C && B || ! F && ! D && ! C && ! A && E &&  B || ! F 

&& ! E && ! D && ! C && ! B && ! A ||  F && E && D && C && B && A || ! D && ! C && F && E &&  B && 

A || ! E && ! B && F && D && C &&  A || ! E && ! D && ! C && ! B && F && A || ! F && ! A && E && D && 

C && B || ! F && ! D && ! C && ! A && E &&  B || ! F && ! E && ! D && ! C && ! B && ! A || B,  Nand[Nor[C, 

F],  E || F && E && D && C && B && A || ! D && ! C && F &&  E && B && A || ! E && ! B && F && D && C 

&&  A || ! E && ! D && ! C && ! B && F &&  A || ! F && ! A && E && D && C &&  B || ! F && ! D && ! C && ! 

A && E &&  B || ! F && ! E && ! D && ! C && ! B && ! A]]]),  A]) || (Nor[ Nand[C && (Nor[ F && E && D && 

C && B && A || ! D && ! C && F && E &&  B && A || ! E && ! B && F && D && C &&  A || ! E && ! D && ! C 

&& ! B && F &&  A || ! F && ! A && E && D && C &&  B || ! F && ! D && ! C && ! A && E &&  B || ! F && ! 

E && ! D && ! C && ! B && ! A,  F || F && E && D && C && B && A || ! D && ! C && F &&  E && B && A || ! 

E && ! B && F && D && C &&  A || ! E && ! D && ! C && ! B && F &&  A || ! F && ! A && E && D && C && 

 B || ! F && ! D && ! C && ! A && E &&   B || ! F && ! E && ! D && ! C && ! B && !  A]), ((F && E && D && 

C && B && A || ! D && ! C &&  F && E && B && A || ! E && ! B && F && D && C &&  A || ! E && ! D && ! C 

&& ! B && F &&  A || ! F && ! A && E && D && C &&  B || ! F && ! D && ! C && ! A && E &&  B || ! F && ! 

E && ! D && ! C && ! B && ! A) && D || A && E) && (F && E && D && C && B && A || ! D && ! C && F 

&& E && B && A || ! E && ! B && F && D && C &&  A || ! E && ! D && ! C && ! B && F && A || ! F && ! A 

&& E && D && C && B || ! F && ! D && ! C && ! A && E &&  B || ! F && ! E && ! D && ! C && ! B && ! A) 

&& B],  Nor[C, Nor[Nand[D, A], C]]]) && (Nand[ F && E && D && C && B && A || ! D && ! C && F && E && 

B &&  A || ! E && ! B && F && D && C &&  A || ! E && ! D && ! C && ! B && F && A || ! F && ! A &&  E && 

D && C && B || ! F && ! D && ! C && ! A && E &&  B || ! F && ! E && ! D && ! C && ! B && ! A,  Nor[F && 

E && D && C && B && A || ! D && ! C && F && E &&  B && A || ! E && ! B && F && D && C &&  A || ! E 

&& ! D && ! C && ! B && F && A || ! F && ! A &&  E && D && C && B || ! F && ! D && ! C && ! A && E && 

 B || ! F && ! E && ! D && ! C && ! B && ! A,  Nand[A, E] || (Nor[D, F])]]))],  Nand[Nor[F, F],      Nor[D && 

(Nand[C, (Nand[E, A]) && (Nor[A, E])] ||  F && E && D && C && B && A || ! D && ! C && F && E && B && 

 A || ! E && ! B && F && D && C &&  A || ! E && ! D && ! C && ! B && F && A || ! F && ! A && E && D && 

C && B || ! F && ! D && ! C && ! A && E &&  B || ! F && ! E && ! D && ! C && ! B && ! A), A]]]) 

 

Komplexitu tohoto $e"ení lze op' t vizualizovat formou stromu (s vynecháním popisu 

uzl)  a list)  pro jednodu""í zobrazení), co& je demonstrováno na Obr.  14.152. 

 

 

Obr.  14.152 Stromová vizualizace bez zobrazení ozna#ení uzl)  a list) . Ka&d% vrchol 

grafu p$edstavuje logick% operátor, p$íp. vstupní prom' nnou (listy). 

 

Pokud se pou&ij'  p$íkaz Simplify z prost$edí Mathematica, pak se p$edchozí $e"ení 

zjednodu"í na: 

 

((C && D) || (! C && ! D)) && ((B && ã) || (! B && ! ã)) && ((F && A) ||  

(! F && ! A)), 

Logic (Electronics) Circuits Synthesis
Boolean Problem

((C && D) || (! C && ! D)) && ((B
&& ã) || (! B && ! ã)) && ((F && 
A) || (! F && ! A))
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Logic (Electronics) Circuits Synthesis
Light Control

 

Input 1  Input 2  Input 3  Output 

False  False  False  False 

False  False  True  False 

False  True  False  False 

False  True  True  True 

True  False  False  False 

True  False  True  True 

True  True  False  False 

 

 

	
	



navy.cs.vsb.cz67

Logic (Electronics) Circuits Synthesis
Heat Control

 

Input 1  Input 2  Input 3  Output 

False  False  False  False 

False  False  True  False 

False  True  False  False 

False  True  True  True 

True  False  False  True 

True  False  True  True 

True  True  False  True 
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Logic (Electronics) Circuits Synthesis
Train Traffic Control

 

Input 1 Input 2 Input 3 Input 4 Output 

False  False  False  False  False 

False  False  False  True  False 

False  False  True  False  False 

False  False  True  True  False 

False  True  False  False  False 

False  True  False  True  False 

False  True  True  False  False 

False  True  True  True  False 

True  False  False  False  False 

True  False  False  True  True 

True  False  True  False  False 

True  False  True  True  True 

True  True  False  False  False 

True  True  False  True  True 

True  True  True  False  False 

True  True  True  True  False 
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Logic (Electronics) Circuits Synthesis
Train Traffic Control
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Logic (Electronics) Circuits Synthesis
Conclusion

• Within this sample studies there were synthesized logical expressions 
and circuits by means of selected evolutionary techniques. 

• Some results have been presented as a logical formula, other schemes 
as logic circuits. 

• Not only from relatively trivial results presented in this study, but also a 
great number of results published in the international literature is seen 
that the evolutionary synthesis using genetic programming, grammatical 
evolution and similar techniques is promising in the future applications 
and results. 

• “Proof” of this is now patented electronic device designed in full 
evolution process…
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Frontiers (?) 
Evolution as a Complex Network
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Conclusions

• EA has been discussed

• Basic ideas of symbolic regression

• Case studies

• Frontiers
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Want to know more?

• Contact us :)
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